Rédigé le 14 août 2018 à 12:00 par , publié dans Non classé.

Akira Goto, Kiyoshi Okado, Nelson Martins, Hua Cai, Vincent Barbier, Olivier Lamiable, Laurent Troxler, Estelle Santiago, Lauriane Kuhn, Donggi Paik, Neal Silverman, Andreas Holleufer, Rune Hartmann, Jiyong Liu, Tao Peng, Jules A. Hoffmann, Carine Meignin, Laurent Daeffler, Jean-Luc Imler: The Kinase IKKβ Regulates a STING- and NF-κB-Dependent Antiviral Response Pathway in Drosophila. Dans: Immunity, (49), p. 225-234, 2018.

Résumé

Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKβ and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKβ and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKβ to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.

BibTeX (Download)

@article{Goto2018,
title = {The Kinase IKKβ Regulates a STING- and NF-κB-Dependent Antiviral Response Pathway in Drosophila},
author = {Akira Goto and Kiyoshi Okado and Nelson Martins and Hua Cai and Vincent Barbier and Olivier Lamiable and Laurent Troxler and Estelle Santiago and Lauriane Kuhn and Donggi Paik and Neal Silverman and Andreas Holleufer and Rune Hartmann and Jiyong Liu and Tao Peng and Jules A. Hoffmann and Carine Meignin and Laurent Daeffler and Jean-Luc Imler},
editor = {Elsevier Inc.},
url = {https://doi.org/10.1016/j.immuni.2018.07.013},
doi = {j.immuni.2018.07.013},
year  = {2018},
date = {2018-08-21},
journal = {Immunity},
number = {49},
pages = {225-234},
abstract = {Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKβ and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKβ and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKβ to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.},
keywords = {antiviral immunity, C19orf12, Dicistrovirus, IKKβ, IMD pathway, innate immunity, NF-κB, picornavirus, STING},
pubstate = {published},
tppubtype = {article}
}